Modellansatz – Details, episodes & analysis
Podcast details
Technical and general information from the podcast's RSS feed.

Modellansatz
Gudrun Thäter, Sebastian Ritterbusch
Frequency: 1 episode/17d. Total Eps: 252

Recent rankings
Latest chart positions across Apple Podcasts and Spotify rankings.
Apple Podcasts
🇬🇧 Great Britain - mathematics
29/07/2025#54🇩🇪 Germany - mathematics
29/07/2025#16🇺🇸 USA - mathematics
29/07/2025#49🇬🇧 Great Britain - mathematics
28/07/2025#53🇩🇪 Germany - mathematics
28/07/2025#13🇺🇸 USA - mathematics
28/07/2025#43🇬🇧 Great Britain - mathematics
27/07/2025#53🇩🇪 Germany - mathematics
27/07/2025#12🇺🇸 USA - mathematics
27/07/2025#73🇬🇧 Great Britain - mathematics
26/07/2025#52
Spotify
No recent rankings available
Shared links between episodes and podcasts
Links found in episode descriptions and other podcasts that share them.
See allRSS feed quality and score
Technical evaluation of the podcast's RSS feed quality and structure.
See allScore global : 59%
Publication history
Monthly episode publishing history over the past years.
Wahlmodelle
samedi 10 février 2024 • Duration 16:12
Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben.
Der Fokus ihrer Projektarbeit liegt auf der Betrachtung und Analyse von Wahlen, in denen mehrere verschiedene Wähler zu einem Thema abstimmen. Formal von Relevanz sind hierbei die sogenannten Wahlsysteme, welche die Art der Aggregation der Wählerstimmen beschreiben. Diese fallen in der Praxis recht vielfältig aus und über die Jahre wurden verschiedenste Wahlsysteme vorgeschlagen, angewendet und auch analysiert. In dieser Arbeit werden drei Kategorien präferenzbasierter Wahlsysteme analysiert: vergleichsbasierte Systeme, Scoring-Systeme sowie Approval-Systeme. Aufbauend darauf erfolgt die Konstruktion mehrstufiger und hybrider Wahlsysteme. Desweiteren werden verschiedenen Wahleigenschaften wie z.B. die Nicht-Diktatur oder die Strategiesicherheit betrachtet. Diese meist wünschenswerten Eigenschaften schließen sich teilweise gegenseitig aus. Die Themen Wahlmanipulation und Wahlkontrolle liegen deshalb besonders im Fokus.
Literatur und weiterführende Informationen
- J. Rothe u.a. Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen, Wählen und Teilen. Spektrum Akademischer Verlag Heidelberg, 2012. doi: 10.1007/978-3-8274-2571-3.
- A.D. Taylor and A.M. Pacelli: Mathematics and Politics - Strategy, Voting, Power, and Proof. Springer-Verlag, Berlin Heidelberg, 2nd corrected ed. 2008, corr. 3rd printing, 2009.
- H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009.
- G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011.
- W.D. Wallis. The Mathematics of Elections and Voting. Springer, Berlin, Heidelberg, 2014.
- K. Loewenstein: Verfassungsrecht und Verfassungspraxis der Vereinigten Staaten, Springer-Verlag, Berlin Heidelberg New York, 1959.
- P. Stursberg, G. Thäter: Social Choice, Gespräch im Modellansatz Podcast, Folge 129, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
- M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- P. Staudt, G. Thäter: Wahlsysteme, Gespräch im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
- M. Fehndrich, T. Pritlove: Wahlrecht und Wahlsysteme, Gespräch im CRE Podcast, Folge 128, Metaebene Personal Media, 2009.
- S. Gassama, L. Harms, D. Schneiderhan, G. Thaeter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
Podcast Lehre
mardi 3 octobre 2023 • Duration 01:42:14
In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium Bachelor Maschinenbau berichtet hatte.
Sie hatte uns vorab gefragt: "Was versprecht ihr euch von dem Podcast - was ist euer Fazit nach den Jahren den ihr ihn schon macht und wie gestaltet ihr warum Lehre? Was macht euch Spaß, was sind Herausforderungen, was frustriert euch? Warum und wie gestaltet ihr Lehre für Studierende außerhalb der Mathematik, also beispielsweise Maschinenbau?"
Es ist ein bisschen lustig, dass die erste Folge Modellansatz, in der Sebastian und Gudrun sich spontan ein Thema zum reden suchten ausgerechnet ein Gespräch über eine neu konzipierte Vorlesung war und der Podcast diese Vorlesung bis heute in unterschiedlichen Rollen begleitet, obwohl das nicht zum ursprünglichen Plan gehörte, wie wir uns einen Podcast über Mathematik vorgestellt hatten.
Einerseits haben viele kein Verständnis dafür, was alles mit Mathe gemacht werden kann, andererseits erleben wir intern andauernd so viele spannenden Vorträge und Personen. Eigentlich bringen wir die beiden Sachen in unserem Podcast nur zusammen. Das Medium Podcast ist dabei durch das Gespräch sehr niederschwellig: Es ist so sehr leicht mit den Gesprächen in die Themen einzusteigen und auch auf viel weiteren Ebenen sich darüber zu unterhalten. Wir sind überzeugt, dass wir mit Text oder Video nie so viele und so umfangreiche Austauschsformen einfangen können, mal ganz abgesehen davon, dass die Formate dann an sich für uns zu einer viel größeren Herausforderung in Form und Darstellung geworden wären. Wir hoffen, dass sich irgendwann auch mal eine Person dazu bekennt, wegen unseres Podcasts ein Mathe- oder Informatikstudium zu erwägen, aber bisher ist das tolle Feedback an sich ja schon eine ganz ausgezeichnete Bestätigung, dass diese Gespräche und Themen nicht nur uns interessieren. Viele der Gespräche haben sich auch schon vielfach für uns gelohnt: Sebastian hat aus vielen Gesprächen Inspirationen für Vorlesungen oder andere Umsetzungen gewonnen. Ein Fazit ist auf jeden Fall, dass das Ganze noch lange nicht auserzählt ist, aber wir auch nicht außerhalb unserer Umgebung leben. In der Pandemie sind einerseits Gespräche am Tisch gegenüber, wie wir sie gerne führen, schwierig geworden, und gleichzeitig ist die Lehre so viel aufwendiger geworden, dass kaum Zeit verblieb. Aufnahmen, waren zuletzt hauptsächlich "interne" Podcasts für Vorlesungen, damit die Studierenden daheim und unterwegs sich mit den Inhalten auseinandersetzen können. Gudrun hat damit auch Themen vorbereitet, die sie anschließend in die Zeitschrift Mitteilungen der Deutschen Mathematiker-Vereinigung als Artikel geschrieben hat. Das betrifft insbesondere die Folgen zu Allyship und zum Mentoring in der Mathematik.
In der Vermittlung von Mathematik im Studium gibt es kaum Themen, die nicht irgendwo spannend und interessant sind. Um die Themen zu verstehen oder wie dort die Lösungen oder Verfahren gefunden wurden, muss die Theorie behandelt und in weiten Teilen verstanden werden. Da aber "Rosinenpickerei" nichts bringt (also nur die nötigsten Teile von Theorie zu erzählen), geht es darum, ein sinnvolles Mittelmaß zu finden. Also auf der einen Seite ein gutes Fundament aufzubauen zu einem Thema, aber gleichzeitig noch Zeit für Einblicke in spannende und interessante Teile zu haben. Es ist in der Vorbereitung auf der einen Seite total schön, wenn dann eine Anwendung perfekt in die Theorie passt, beispielsweise entwirft Sebastian gerade ein Skript zu formalen Sprachen und Grammatiken, und dann kann man das Komprimierverfahren LZW als eine dynamische Grammatik sehen. Oder es geht um theoretische und "langweilige" Zustandsmaschinen und dann gibt es das Beispiel, dass die Raspberry Pi Foundation gerade dazu einen eigenen Chip (RP2040) mit solchen Komponenten veröffentlicht, oder mit dem Newton-Verfahren wurde die schnelle Quadratwurzel für das Computerspiel Quake erst möglich. Ob das dann auch so toll in der Vorlesung herüberkommt, ist nochmal ein eigenes Thema, aber wenn es klappt, so ist das natürlich großartig. Umgekehrt frustriert es dann schon, wenn die Grundlagen nicht bei möglichst vielen ankommen- nicht jede Person muss sich ja bis ins letzte für ein Thema begeistern, aber am Ende sollte der Großteil die wichtigen Hauptsachen mitnehmen. Leider gibt es immer ein paar Leute, wo das dann trotz vieler Angebote leider nicht so gut klappt, und das frustriert natürlich. Dann muss geschaut werden, woran es liegen könnte. Aktuell hilft das Nörgeln und Nerven, wenn nicht regelmäßig die angebotenen Übungsaufgaben abgegeben werden, wohl mit am Besten.
Warum werden mathematische Themen im Ingenieurstudium relevant: Das hängt ganz davon ab, welche Kurse wir haben, und was gebraucht wird... Sebastian unterrichtet jetzt gerade Informatik-Studierende und in den Wirtschaftswissenschaften, früher außer MACH/CIW/BIW/MAGE... auch mal Mathe-Lehrende. Das "Wie" ist dann jeweils auf die Gruppe zugeschnitten: Zunächst gibt es ja unterschiedliche Voraussetzungen: Curriculum, Haupt- & Nebenfächer, etc.. Dann gibt es eine Liste von Fertigkeiten, die vermittelt werden sollen und können, und dann besonders in den Vorlesungen außerhalb des Mathematik-Studiums die lästige Beschränkung des Umfangs der Veranstaltung, und wieviel Eigenarbeit erwartet werden kann. Grundsätzlich möchten wir auch bei den Nicht-Hauptfächlern so viel davon erzählen, was dahinter steht- statt "ist halt so"- und was heute damit gemacht werden kann. Diese Motivation macht vielen das Lernen leichter. Es muss aber auch immer viel selbst gemacht werden, dh. viele Aufgaben und prototypische Problemlösungen, denn Mathe lernt sich nicht durchs zuhören alleine. (leider... ;) Damit geht das Puzzle-Spiel los: Welche Grundlagen müssen aufgebaut werden, und was kann wie in der gegebenen Zeit sinnvoll behandelt werden... Und natürlich immer mit dem Blick darauf, ob es Anküpfungspunkte in die Studienrichtungen der Studierenden gibt.
Literatur und weiterführende Informationen
- F. Blendin: Fußballfibel FSV Frankfurt
- MINT-Kolleg Baden-Württemberg
- fyyd - Die Podcast-Suchmaschine
- F. Blendin, S. Düerkop: Die Suche nach der ersten Frau, Zeit, 2.9.2020.
- GanzOhr-Konferenzen auf Wissenschaftspodcasts.de.
- RP2040 Dokumentation, Prozessor mit 8 Zustandsmaschinen.
- Schülerlabor Mathelabor der Fakultät für Mathematik am KIT und das Onlinelabor
- Einsetzungsverfahren gegenüber dem Gauß-Jordan-Verfahren
- Vom traditionellen Riemann-Integral zum modernen Lebesgue-Integral mit Nullmengen, das natürlich kompatibel ist zur Maßtheorie, Fourier-Transformation und zu den Sobolev-Räumen für Finite-Elemente
- Farbwahrnehmung durch Sinneszellen - Sinneszellen für langwelliges Licht werden auch durch kurzwelliges Licht angesprochen und das schließt die Illusion des Farbkreises
- Legende verloren Der Podcast über die vergessenen Geschichten des deutschen und internationalen Frauenfußballs, Produziert von Sascha, Sven, Petra, Freddy, Helga, Sunny, Franzi
- G4 Podcast über CNC-Maschinen (Thema Zerspanung, zuletzt mit Sonderfolgen zum Lernen im Studium)
- Braucast - Ein Hobbybrau-Podcast.
- A. Chauhan, G. Thäter: CSE, Gespräch im Modellansatz Podcast, Folge 249, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2022.
- F. Blendlin, G. Thäter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
- Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
- ]http://modellansatz.de/maschinenbau-hm|G. Thäter, G. Thäter: Maschinenbau HM], Gespräch im Modellansatz Podcast, Folge 169, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
- G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017.
- A. Kirsch: Lehramtsausbildung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 104, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
- M.-L. Maier, S. Ritterbusch: Rotierender 3d-Druck, Gespräch im Modellansatz Podcast, Folge 9, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013.
- C. Spannagel, S. Ritterbusch: Flipped Classroom, Gespräch im Modellansatz Podcast, Folge 51, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
- M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- S. Bischof, T. Bohlig, J. Albrecht, G. Thäter: Benchmark OpenLB, Gespräch im Modellansatz Podcast, Folge 243, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021.
- Y. Brenner, B. Hasenclever, U. Malottke, G. Thäter: Oszillationen, Gespräch im Modellansatz Podcast, Folge 239, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021.
- S. Gassama, L. Harms, D. Schneiderhan, G. Thäter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
- L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.
- A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.
- A. Bayer, T. Braun, G. Thäter: Binärströmung, Gespräch im Modellansatz Podcast, Folge 218, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
- C. Brett, N. Wilhelm, G. Thäter: Fluglotsen, Gespräch im Modellansatz Podcast, Folge 196, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
- J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, Gespräch im Modellansatz Podcast, Folge 184, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
- S. Ritterbusch: 0x5f3759df - ein WTF für mehr FPS, Vortrag auf der GPN20, 2022.
- M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
- M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- M. Heidelberger: Bilderkennung zeigt Wege als Klang, Presseinformation 029/2018, Karlsruher Institut für Technologie (KIT), 2018.
- N. Ranosch, G. Thäter: Klavierstimmung. Gespräch im Modellansatz Podcast, Folge 67, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
Dynamische Benetzung
dimanche 11 juillet 2021 • Duration 01:06:26
Gudrun spricht in dieser Folge mit Mathis Fricke von der TU Darmstadt über Dynamische Benetzungsphänomene. Er hat 2020 in der Gruppe Mathematical Modeling and Analysis bei Prof. Dieter Bothe promoviert. Diese Gruppe ist in der Analysis und damit in der Fakultät für Mathematik angesiedelt, arbeitet aber stark interdisziplinär vernetzt, weil dort Probleme aus der Verfahrenstechnik modelliert und simuliert werden.
Viele Anwendungen in den Ingenieurwissenschaften erfordern ein tiefes Verständnis der physikalischen Vorgänge in mehrphasigen Strömungen, d.h. Strömungen mit mehreren Komponenten. Eine sog. "Kontaktlinie" entsteht, wenn drei thermodynamische Phasen zusammenkommen und ein komplexes System bilden. Ein typisches Beispiel ist ein Flüssigkeitströpfchen, das auf einer Wand sitzt (oder sich bewegt) und von der Umgebungsluft umgeben ist. Ein wichtiger physikalischer Parameter ist dabei der "Kontaktwinkel" zwischen der Gas/Flüssig-Grenzfläche und der festen Oberfläche. Ist der Kontaktwinkel klein ist die Oberfläche hydrophil (also gut benetzend), ist der Kontaktwinkel groß ist die Oberläche hydrophob (schlecht benetzend). Je nach Anwendungsfall können beide Situationen in der Praxis gewollt sein. Zum Beispiel können stark hydrophobe Oberflächen einen Selbstreinigungseffekt aufweisen weil Wassertropfen von der Oberfläche abrollen und dabei Schmutzpartikel abtransportieren (siehe z.B. https://de.wikipedia.org/wiki/Lotoseffekt).
Dynamische Benetzungsphänomene sind in Natur und Technik allgegenwärtig. Die Beine eines Wasserläufers nutzen eine ausgeklügelte hierarchische Oberflächenstruktur, um Superhydrophobie zu erreichen und das Insekt auf einer Wasseroberfläche leicht stehen und laufen zu lassen. Die Fähigkeit, dynamische Benetzungsprozesse zu verstehen und zu steuern, ist entscheidend für eine Vielzahl industrieller und technischer Prozesse wie Bioprinting und Tintenstrahldruck oder Massentransport in Mikrofluidikgeräten. Andererseits birgt das Problem der beweglichen Kontaktlinie selbst in einer stark vereinfachten Formulierung immer noch erhebliche Herausforderungen hinsichtlich der fundamentalen mathematischen Modellierung sowie der numerischen Methoden.
Ein übliche Ansatz zur Beschreibung eines Mehrphasensystems auf einer makroskopischen Skala ist die Kontinuumsphysik, bei der die mikroskopische Struktur der Materie nicht explizit aufgelöst wird. Andererseits finden die physikalischen Prozesse an der Kontaktlinie auf einer sehr kleinen Längenskala statt. Man muss daher das Standardmodell der Kontinuumsphysik erweitern, um zu einer korrekten Beschreibung des Systems zu gelangen. Ein wichtiges Leitprinzip bei der mathematischen Modellierung ist dabei der zweite Hauptsatz der Thermodynamik, der besagt, dass die Entropie eines isolierten Systems niemals abnimmt. Dieses tiefe physikalische Prinzip hilft, zu einem geschlossenen und zuverlässigen Modell zu kommen.
Die größte Herausforderung in der kontinuumsmechanischen Modellierung von dynamischen Benetzungsprozessen ist die Formulierung der Randbedingungen für die Navier Stokes Gleichungen an der Festkörperoberfläche sowie am freien Rand zwischen Gas und Flüssigkeit. Die klassische Arbeit von Huh und Scriven hat gezeigt, dass die übliche Haftbedingung ("no slip") an der Festkörperoberfläche nicht mit einer bewegten Kontaktlinie und damit mit einem dynamischen Benetzungsprozess verträglich ist. Man kann nämlich leicht zeigen, dass die Lösung für die Geschwindigkeit in diesem Fall unstetig an der Kontaktlinie wäre. Weil das Fluid (z.B. Wasser) aber eine innere Reibung (Viskosität) besitzt, würde dann mit einer unendlichen Rate ("singulär") innere Energie in Wärme umgewandelt ("dissipiert"). Dieses Verhalten ist offensichtlich unphysikalisch und zeigt dass eine Anpassung des Modells nötig ist. Einer der wesentlichen Beiträge von Mathis Dissertation ist die qualitative Analyse von solchen angepassten Modellen (zur Vermeidung der unphysikalischen Singularität) mit Methoden aus der Geometrie. Die Idee ist hierbei eine systematische Untersuchung der "Kinematik", d.h. der Geometrie der Bewegung der Kontaktlinie und des Kontaktwinkels. Nimmt man das transportierende Geschwindigkeitsfeld als gegeben an, so kann man einen fundamentalen geometrischen Zusammenhang zwischen der Änderungsrate des Kontaktwinkels und der Struktur des Geschwindigkeitsfeldes herleiten. Dieser geometrische (bzw. kinematische) Zusammenhang gilt universell für alle Modelle (in der betrachteten Modellklasse) und erlaubt tiefe Einsichten in das qualitative Verhalten von Lösungen.
Neben der mathematischen Modellierung braucht man auch numerische Werkzeuge und Algorithmen zur Lösung der resultierenden partiellen Differentialgleichungen, die typischerweise eine Variante der bekannten Navier-Stokes-Gleichungen sind. Diese nichtlinearen PDE-Modelle erfordern eine sorgfältige Auswahl der numerischen Methoden und einen hohen Rechenaufwand. Mathis entschied sich für numerische Methoden auf der Grundlage der geometrischen VOF (Volume-of-Fluid) Methode. Die VOF Methode ist eine Finite Volumen Methode und basiert auf einem diskreten Gitter von würfelförmigen Kontrollvolumen auf dem die Lösung des PDE Systems angenähert wird. Wichtig ist hier insbesondere die Verfolgung der räumlichen Position der freien Grenzfläche und der Kontaktlinie. In der VOF Methode wird dazu für jede Gitterzelle gespeichert zu welchem Anteil sie mit Flüssigkeit bzw. Gas gefüllt ist. Aus dieser Information kann später die Form der freien Grenzfläche rekonstruiert werden. Im Rahmen von Mathis Dissertation wurden diese Rekonstruktionsverfahren hinsichtlich Ihrer Genauigkeit nahe der Kontaktlinie weiterentwickelt.
Zusammen mit komplementären numerischen Methoden sowie Experimenten im Sonderforschungsbereich 1194 können die Methoden in realistischen Testfällen validiert werden. Mathis hat sich in seiner Arbeit vor allem mit der Dynamik des Anstiegs einer Flüssigkeitssäule in einer Kapillare sowie der Aufbruchdynamik von Flüssigkeitsbrücken (sog. "Kapillarbrücken") auf strukturierten Oberflächen beschäftigt. Die Simulation kann hier als eine numerische "Lupe" dienen und Phänomene sichtbar machen die, z.B wegen einer limitierten zeitlichen Auflösung, im Experiment nur schwer sichtbar gemacht werden können. Gleichzeitig werden die experimentellen Daten genutzt um die Korrektheit des Modells und des numerischen Verfahrens zu überprüfen.
Literatur und weiterführende Informationen
- Fricke, M.: Mathematical modeling and Volume-of-Fluid based simulation of dynamic wetting Promotionsschrift (2021).
- de Gennes, P., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena, Springer (2004).
- Fricke, M., Köhne, M., Bothe, D.: A kinematic evolution equation for the dynamic contact angle and some consequences. Physica D: Nonlinear Phenomena, 394, 26–43 (2019) (siehe auch arXiv).
- Fricke, M., Bothe, D.: Boundary conditions for dynamic wetting – A mathematical analysis. The European Physical Journal Special Topics,
229(10), 1849–1865 (2020).
- Gründing, D., Smuda, M., Antritter, T., Fricke, M., Rettenmaier, D., Kummer, F., Stephan, P., Marschall, H., Bothe, D.: A comparative study of transient capillary rise using direct numerical simulations, Applied Mathematical Modelling (2020)
- Fricke, M., Marić, T. and Bothe, D.: Contact line advection using the geometrical Volume-of-Fluid method, Journal of Computational Physics (2020) (siehe auch arXiv)
- Hartmann, M., Fricke, M., Weimar, L., Gründing, D., Marić, T., Bothe, D., Hardt, S.: Breakup dynamics of Capillary Bridges on Hydrophobic Stripes, International Journal of Multiphase Flow (2021)
- Fricke, M., Köhne, M. and Bothe, D.: On the kinematics of contact line motion, Proceedings in Applied Mathematics and Mechanics (2018)
- Fricke, M., Marić, T. and Bothe, D.: Contact line advection using the Level Set method, Proceedings in Applied Mathematics and Mechanics (2019)
- Huh, C. and Scriven, L.E: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, Journal of Colloid and Interface Science (1971)
- Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mechanica, 226(6), 1757–1805. (2015).
- Bothe, D., Prüss, J.: On the Interface Formation Model for Dynamic Triple Lines. In H. Amann, Y. Giga, H. Kozono, H. Okamoto, & M. Yamazaki (Eds.), Recent Developments of Mathematical Fluid Mechanics (pp. 25–47). Springer (2016).
Podcasts
- Sachgeschichte: Wie läuft der Wasserläufer übers Wasser?
- G. Thäter, S. Claus: Zweiphasenströmungen, Gespräch im Modellansatz Podcast, Folge 164, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018
- M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016
Zerstäubung
jeudi 14 décembre 2017 • Duration 31:07
Corina Schwitzke ist Gruppenleiterin im Institut für thermische Strömungsmaschinen (ITS) am KIT. Gudrun wollte gern ein Gespräch über partikelbehaftete Strömungen mit ihr führen, denn dies ist ein wichtiges Thema in beiden Arbeitsgruppen.
In Corinas Institut gilt das Interesse vor allem der Zerstäubung von Kerosin zu feinen Tröpfchen in Flugtriebwerken Seit 10 Jahren gibt es dort Strömungssimulation mit einer sogenannten Partikelmethode. Die Partikel in dieser Anwendung sind Stützstellen der Rechenmethode und repräsentieren die Flüssigkeit, z.B. Kerosin, und das Gas, d.h. die verdichtete Luft. Vom Blickpunkt der Simulation aus sind die Partikel eigentlich nur Diskretisierungspunkte, die sich mit der Strömung mitbewegen. Sie repräsentieren dabei ein Volumen und die benutzten Koordinaten "schwimmen" mit dem Fluid, d.h. die Methode benutzt ein Lagrange-Koordinatensystem.
Die Gleichungen, die der Simulation zugrunde liegen, sind die Navier-Stokes Gleichungen - zunächst isotherm. Falls die Temperaturänderung mitbetrachtet werden muss, dann erfolgt das durch das Lösen der Energiegleichung, für die die diskrete Fassung sehr einfach zu realisieren ist. Das für den Zerstäubungsprozess gut geeignete numerische Verfahren, das am ITS umgesetzt wurde (und dort auch noch weiter entwickelt wird) ist Smoothed particle Hydrodynamics (SPH). Die Methode wurde zu Beginn der 1970er Jahre für die Simulation von Galaxie-Entstehung entwickelt. Ein großer Vorteil ist, dass das Verfahren sich extrem gut parallel implementieren läßt und die Simulation Gebiete ausspart, wo zunächst nichts passiert. Außerdem ist es einfacher, die Physik des Tröpfchenzerfalls zu modellieren als mit den klassischen kontinuumsmechanischen Ansätzen.
Der wichtigste Aspekt für die Simulation der Kraftstoffzerstäubung ist die Oberflächenspannung. Sie muss physikalisch und numerisch richtig beschrieben werden und führt dann dazu dass ein Flüssigkeitsfilm in Tropfen zerfällt. Hier geht das Wissen um Oberflächenspannungskoeffizienten ein, die aus Experimenten gewonnen werden ebenso wie die erwartbaren Kontaktwinkel an Wänden. Das Kräftegleichgewicht von angreifenden Scher- und Oberflächenkräften muss die modellierende Physik abbilden - die numerischen Partikel bekommen daraus direkt eine Geschwindigkeit zugewiesen, die auch ausdrückt, ob der Film reißt oder zusammenhängend bleibt.
Diese Partikelmethode vermeidet die Probleme von gitterbasierten Verfahren beim Reißen des Films, denn Grenzflächen werden automatisch mittransportiert. Durch die gut skalierende parallele Implementierung ist es möglich, mit einigen Milliarden Partikeln zu rechnen.
Die Ergebnisse der Simulationen haben vielfältige Anwendungen. Eine ist es Schadstoffemission zu minimieren. Das ist möglich durch erzwingen der vollständigen Verbrennung des Kraftstoffes oder durch die Vermeidung der Entstehung von Stick- und Schwefeloxiden im Prozess. Das kann durch die Kraftstoffverteilung und über die Temperaturniveaus gesteuert werden.
Eine andere Anwendung, die mit diesen Ideen schon funktioniert, ist die Kühlung von Zahnrädern in Getrieben durch einen Flüssigkeitsstrahl. In Zukunft soll auch die Simulation von Zerstäubung einer Biomasse möglich werden, die nichtnewtonsche Fließeigenschaften hat. Das große Ziel am ITS, das in naher Zukunft umgesetzt werden soll, ist ein virtueller Prüfstand für Zerstäubungsprozesse.
Corina Schwitzke (geb. Höfler) hat Verfahrenstechnik an der Uni Karlsruhe studiert mit einem Schwerpunkt in Richtung Strömungsmechanik und Verbrennungstechnik. Ihre Diplomarbeit fertigte sie in Los Angeles zu einem Thema im Kontext von Verbrennung an. Es folgte eine Promotion an der KIT-Fakultät Maschinenbau in Karlsruhe, in der sie die Grundlage für die physikalische Modellierung der Zerstäubung mittels der SPH-Methode leistete. Studierende aus der Technomathematik und Informatik sowie dem Maschinenbau unterstützen das Institut in der Implementierung des Verfahrens.
Literatur und weiterführende Informationen
- M.C. Keller e.a.:Turbomachinery Technical Conference and Exposition : Volume 2B - Turbomachinery Proceedings of ASME Turbo Expo 2017, Charlotte, North Carolina, USA, 26th - 30th June 2017, Art.Nr. GT2017-63594, ASME, New York (NY). doi:10.1115/GT2017-63594, 2017.
- M.C. Keller e.a.: Numerical Modeling of Oil-Jet Lubrication for Spur Gears using Smoothed Particle Hydrodynamics, 11th International SPHERIC Workshop, Munich, Germany, June 13-16, 2016, 69-76.
- S. Braun e.a.: Simulation of Primary Atomization: Assessment of the Smoothed Particle Hydrodynamics (SPH) Method ICLASS 2015 / 13th International Conference on Liquid Atomization and Spray Systems : August 23-27, 2015, Tainan, Taiwan. Ed.: Ta-Hui Lin
- C. Höfler:Entwicklung eines Smoothed Particle Hydrodynamics (SPH) Codes zur numerischen Vorhersage des Primärzerfalls an Brennstoffeinspritzdüsen. Dissertation. 2013. Karlsruhe. doi:10.5445/IR/1000048880
- J.J. Monaghan: Smoothed Particle Hydrodynamics. Annu. Rev. Astrophys. 1992.
Podcasts
- T. Henn: Partikelströmungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 115, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- S. Höllbacher: Finite Volumen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 122, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
Mikrowellen
jeudi 7 décembre 2017 • Duration 20:28
Gudrun unterhält sich diesmal mit Johanna Mödl. Johanna hat von August bis Oktober 2017 ihre Bachelorarbeit Analytische und numerische Untersuchungen zum mikrowelleninduzierten Temperaturanstieg von zylindrischen Probekörpern aus Beton geschrieben. Der Hintergrund war ein Thema aus dem Institut für Massivbau und Baustofftechnologie (Abt. Baustoffe und Betonbau). Dort wird untersucht, wie hochenergetische Mikrowellen solche Temperaturunterschiede in (trockenen) Betonkörpern erzeugen, dass der Werkstoff an der Oberfläche zerstört wird.
Um Erfahrungswerte im Umgang mit diesem Verfahren zu erhalten, werden derzeit Laborexperimente durch das Institut für Massivbau und Baustofftechnologie und das Institut für Hochleistungsimpuls- und Mikrowellentechnik, beides Institute des Karlsruher Instituts für Technologie, durchgeführt. Auf Basis der Messergebnisse wird versucht, den Vorgang durch einfache Gleichungen zu beschreiben, um vorhersagen zu können, wie er sich in größerem Maßstab verhält. Aufgrund der Komplexität des Prozesses werden nur vereinfachende Modelle betrachtet. Da diese sich durch partielle Differentialgleichungen beschreiben lassen, sollte der Vorgang während der Bachelorarbeit aus mathematischer Sicht analysiert werden.
Die Ausbreitung der Mikrowellen-Energie als Wärme im Baustoff wird durch die Wärmeleitungsgleichung gut beschrieben. Dies ist eine in der Mathematik wohlstudierte Gleichung. Im Allgemeinen lassen sich aber analytische Lösungen nur schwer oder gar nicht berechnen. Daher mussten zusätzlich numerische Verfahren gewählt und implementiert werden, um eine Approximation der Lösung zu erhalten. Johanna entschied sich für das Finite-Differenzen-Verfahren im Raum und ein explizites Eulerverfahren in der Zeitrichtung, da beide einfach zu analysieren und zu implementieren sind.
Erfreulicherweise stimmt die numerisch auf diese Weise approximierte Lösung mit den experimentellen Ergebnissen in den hauptsächlichen Gesichtspunkten überein. Die Wärme breitet sich von der Quelle in den Beton aus und es kommt im zeitlichen Verlauf zu einer kontinuierlichen Erwärmung in den Körper hinein.
Das größte Problem und die vermutliche Ursache dafür, dass die Meßdaten noch nicht ganz genau mit den Simulationen übereinstimmen ist, dass man physikalisch sinnvollere Randbedingungen bräuchte. Im Moment wird - wie üblich - davon ausgegangen, dass am Rand des Betonzylinders, wo nicht die Energie eintritt, der Körper Umgebungstemperatur hat. Hier bräuchte man eine phyiskalische Modellierung, die das korrigiert.
Literatur und weiterführende Informationen- W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Springer Spektrum, Wiesbaden, 4. Auflage, 2017.
- B. Lepers e.a.: A drying and thermoelastic model for fast microwave heating of concrete. Global Digital Central, Frontiers in Heat and Mass Transfer, 2014.
- M. Umminger e.a.: Ablation kontaminierter Oberflächen zementgebundener Bauteile beim Rückbau kerntechnischer Anlagen. Abschlussbericht, BMBF- Förderkennzeichen 02S8709 und 02S8719, Februar 2015.
Wahlprognosemodelle
jeudi 23 novembre 2017 • Duration 40:09
Gudrun hat sich mit Oliver Beige unterhalten. Im Gespräch geht es um die theoretische Seite von Modellen für Wahlprognosen. Dabei beziehen sie sich in vielen Beispielen auf den Wahlkampf in den USA und insbesondere auf die Besonderheiten der Kampagne von Donald Trump. Die Gelegenheit bot sich vor einem gemeinsamen Konzertbesuch in Berlin-Neukölln in der Alten Welt Siralti.
In der Theorie sind Wahlprognosemodell traditionell in der Politologie verankert, wurden aber immer mehr durch ökonomische Modelle verbessert. Die größte Veränderung der letzten Jahre ist, dass es immer mehr empirische Daten gibt, die auch zum Teil der Öffentlichkeit zur Verfügung stehen. Solche Daten und Diskussionen zur Wertung finden sich z.B. auf der Webseite FiveThirtyEight. Große Berühmtheit erreichte schließlich Nate Silver dadurch, dass er 2008 in 49 von 50 US-Bundeststaaten das Ergebnis der US-Präsidentschaftswahlen korrekt vorhergesagt hatte. Im Wahljahr 2012 stimmte seine Vorhersage sogar in allen 50 Staaten. Seine Ergebnisse erzielte er dabei lediglich durch Aggregation von veröffentlichten Umfrageergebnissen.
Im Wahljahr 2016 hat aber Donald Trump die Wahl gewonnen obwohl Nate Silvers Modelle (und die Modelle ähnlich arbeitender Wahlforscher) die Wahrscheinlichkeit dafür, dass Hillary Clinton die Präsidentschaftswahl für sich entschieden wird, auf 70% - 99% beziffert hatten. Es stellt sich die Frage, wo der Fehler dieser Prognosemodelle lag.
Wenn man im Jahr 2016 genau zuhörte, gab es auch Stimmen, die Donald Trump schon im Frühjahr als wahrscheinlichen Gewinner der Wahlen sahen - z.B. die Zeitung Los Angeles Times. Sie wurden in den Medien zwar lieber als Ausreißer dargestellt, behielten aber schließlich recht. Wieso? Sie hatten den Demographiewandel in den USA in ihre Modellbildung einbezogen. Um zu verstehen, was damit gemeint ist, muss man zunächst einmal klarer beschreiben, wie US-Wahlen traditionell bisher abliefen, und welche Modelle daraus abgeleitet wurden.
Es gibt ein schönes Denkmodell, das veranschaulicht, wie das sogenannte Hotelling Gesetz (1929) wirkt. Man stelle sich zwei Eisverkäufer am Strand vor. Wie sollten sie jeweils ihren Stand so positionieren, dass sie möglichst viele Kunden anziehen? Die stille Annahme dabei ist, dass die Badenden gleichmäßig über den Strand verteilt sind und alle irgendwann Lust auf ein (genau ein) Eis bekommen. Das verblüffende Ergebnis ist: Ein Equilibrium der Einflussbereiche der beiden Verkäufer stellt sich ein, wenn beide in der Mitte des Strandes nebeneinander stehen.
Im Wahlkampf in den USA folgt man dieser Strategie, indem beide endgültigen Präsidentschaftskandidaten wenig ideologisch unterscheidbar aufgebaut werden. Begünstigt wird das auch durch das mehrstufige Wahlsystem, denn die Vorwahlen (Primaries) kann man dazu nutzen, dass die extremeren Kandidaten herausgefiltert werden. Dann entscheidet über den Sieg schließlich vor allem die erfolgreiche Mobilisierung der Wechselwähler. Eine (stillschweigende) Voraussetzungen dafür, dass von der Ähnlichkeit der Positionen der eigene Kandidat profitiert ist, dass die Wahlbeteiligung hoch ist. Das ist in den USA leider immer weniger der Fall.
Dass die Wahlen 2016 anders verliefen als gewohnt, zeigte sich, als bei den Republikanern die Establishmentkandidaten keine Chance gegen den idologisch extremen Trump hatten. Bei den Demokraten konnte jedoch die moderatere Hillary Clinton den ideologisch positionierten Bernie Sanders ruhig stellen. Das bricht mit den bisher gültigen Annahmen der Wahlvorhersagemodelle: Hotellings Model funktioniert nicht mehr. Aber nur weniger der Modelle erkennen die veränderte Situation und reagieren mit neuen Prognosemodellen. Trump hatte dann schließlich auch Erfolg mit seiner Strategie, die Clinton-Wählerschaft zu entmutigen überhaupt zur Wahl zu gehen und die eigene - eigentlich kleine - Clientel extrem zu mobilisieren.
Den Trend zur Radikalisierung der Republikaner beobachtet man tatsächlich schon eine Weile. Er setzte etwa mit der Wahl von Reagan ein. Es gab die inzwischen sprichwörtlichen "27%" -- Wähler, die auch einen völlig unqualifizierten rechtsgerichteten Kandidaten wählen. Der sprichwörtliche Name wurde erfunden, nachdem bei der Senatswahl in Illinois ein erkennbar aussichtsloser Kandidat gegen den damals unbekannten Obama 27% der Stimmen erhielt. Diese Zahl ist seitdem eher gestiegen.
Für Wahlprognosen braucht es also Modelle, die dieses bekannte menschliche Verhalten besser berücksichtigen. Keith T. Poole und Howard Rosenthal sammeln alle Stimmen im amerikanischen Kongress - das sind ja einfache Ja/Nein Entscheidungen - und analysieren sie fortlaufend. Ihre Methoden lieferten Politikwissenschaftlern erstmals rigorose quantitative Methodiken für Ideologiehörigkeit von Entscheidern über die Zeit der Existenz der USA hinweg. Man nennt dies die Nominal Three-Step Estimation.
Literatur und weiterführende Informationen- Eisverkäufer Modell
- K.T. Poole, H. Rosenthal: A Spatial Model for Legislative Roll Call Analysis GSIA Working Paper No. 5–83–84, 1983.
- K.T. Poole, H. Rosenthal: Congress: A Political-Economic History of Roll Call Voting. New York: Oxford University Press, 1997.
- K.T. Poole, H. Rosenthal: Congress: Ideology and Congress New Brunswick, Transaction Publishers, 2007.
- NOMINATE and American Political History: A Primer.
- W-NOMINATE in R: Software and Examples
- H. Hotelling: Stability in Competition Economic Journal 39: 41–57, 1929.
- Voteview, the online voting data repository started by Poole & Rosenthal.
- Poll-Aggregatoren erklären, warum sie danebenlagen.
Weather Generator
jeudi 16 novembre 2017 • Duration 38:24
Gudrun is speaking with the portuguese engineer Bruno Pousinho. He has been a student of the Energy Technologies (ENTECH) Master program. This is an international and interdisciplinary program under the label of the European Institute of Innovation and Technology (EIT) inbetween a number of European technical universities.
Bruno spent his second master year at the Karlsruhe Institute of Technology (KIT). Gudrun had the role of his supervisor at KIT while he worked on his Master's thesis at the Chair of Renewable and Sustainable Energy Systems (ENS) at TUM in Garching. His direct contact person there was Franz Christange from the group of Prof. Thomas Hamacher.
Renewable energy systems are a growing part of the energy mix. In Germany between 1990 and 2016 it grew from 4168 GW to 104024 GW. This corresponds to an annual power consumption share of 3.4% and 31.7%, respectively. But in the related research this means a crucial shift. The conventional centralized synchronous machine dominated models have to be exchanged for decentralized power electronic dominated networks - so-called microgrids. This needs collaboration of mechanical and electrical engineers. The interdisciplinary group at TUM has the goal to work on modeling future microgrids in order to easily configure and simulate them.
One additional factor is that for most renewable energy systems it is necessary to have the right weather conditions. Moreover, there is always the problem of reliability. Especially for Photovoltaics (PV) and wind turbines Weather phenomena as solar irradiation, air temperature and wind speed have to be known in advance in order to plan for these types of systems.
There are two fundamentally different approaches to model weather data. Firstly the numerical weather and climate models, which provide the weather forecast for the next days and years. Secondly, so-called weather generators. The numerical models are very complex and have to run on the largest computer systems available. For that in order to have a simple enough model for planning the Renewable energy resources (RER) at a certain place weather generators are used. They produce synthetic weather data on the basis of the weather conditions in the past. They do not predict/forecast the values of a specific weather phenomenon for a specific time but provides random simulations whose outputs show the same or very similar distributional properties as the measured weather data in the past.
The group in Garching wanted to have a time dynamic analytical model. The model is time continuous which grant it the ability of having any time sampling interval. This means it wanted to have a system of equations for the generation of synthetic weather data with as few as possible parameters. When Bruno started his work, there existed a model for Garching (developped by Franz Christange) with about 60 parameters. The aim of Bruno's work was to reduce the number of parameters and to show that the general concept can be used worldwide, i.e. it can adapt to different weather data in different climate zones. In the thesis the tested points range from 33º South to 40º North.
In the synthesis of the weather generator the crucial tool is to use stochastic relations. Mostly the standard normal distribution is applied and shaped for the rate of change and corelation between RER. In particular this means that it describes the fundamental behavior of weather (mean, standard deviation, time- and cross-correlation) and introduces them into white noise in an analytical way. This idea was first introduced for crop estimation by Richardson in 1985. Time-dependence works on different time scales - through days and through seasons, e.g..
In the Analysis it is then necessary to parametrize the measured weather data and to provide a parameter set to the weather model.
Bruno started his Master course in Lisbon at Instituto Superior tecnico (IST). In his second year he changed to KIT in Karlsruhe and put his focus on Energy systems. In his thesis he uses a lot of mathematics which he learned during his Bachelor education and had to recall and refresh.
The results of the project are published in the open source model 'solfons' in Github, which uses Python and was developed in MATLAB.
References- F. Christange & T. Hamacher: Analytical Modeling Concept for Weather Phenomena as Renewable Energy Resources, in IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016. doi: 10.1109/ICRERA.2016.7884551
- P. Ailliot, D. Allard, P. Naveau, C. D. Beaulieu, R. Cedex: Stochastic weather generators, an overview of weather type models, Journal de la Société Française de Statistique, Vol. 156, No 1, pp. 1-14, 2015.
- C.L. Wiegand, A.J. Richardson: Leaf area, light interception, and yield estimates from spectral components analysis, Agron. J., 76, 543, 1984.
- solfons: Artificial wheater data for energy system modeling, Software at GitHub.
Podcasts
- S. Seier, T. Alexandrin: Blindstrom - Der Energie Podcast, 2016-2017.
- M. Völter, V. Hagenmeyer: Stromnetze, ein Überblick, omega tau Podcast, Episode 246, 2017.
- K. A. Zach, L. Bodingbauer: Energiespeicher, PHS186 in der Physikalischen Soiree, 2013.
- F. Trieb, T. Pritlive: Energie der Zukunft, RZ033 im Raumzeit Podcast, Metaebene Personal Media, 2012.
Dämpfung viskoser Flüssigkeiten
jeudi 9 novembre 2017 • Duration 39:50
Gudrun und Karoline Disser trafen sich am Rand eines Seminarvortrages an der TU in Darmstadt. Dort arbeitet Karoline am internationalen Graduiertenkolleg Mathematical Fluid Dynamics als Postdoc. Der Forschungsgegenstand, über den die beiden schließlich ins Gespräch kamen, ist die Bewegung starrer Körper, in denen eine Flüssigkeit eingeschlossen ist.
Ein recht anschauliches Beispiel hierfür ist die Frage, wie man herausfinden kann, ob ein Ei schon gekocht oder noch roh ist. Wenn man es auf einer glatten Fläche aufrecht stehend rotieren lässt, bleibt das gekochte Ei fast aufrecht, während sich das rohe Ei schnell hinlegt und weiter um eine kurze Achse rotiert. Die Flüssigkeit verhindert die Präzession um die lange Achse.
Allgemeiner ausgedrückt untersucht Karoline Trägheitsbewegungen gekoppelter Systeme, die aus einem starren Körper bestehen mit einem Hohlraum, der vollständig mit einer viskosen Flüssigkeit gefüllt ist. Sie zeigt mathematisch, dass bei beliebigen Anfangsdaten mit endlicher kinetischer Energie, jede korrespondierende schwache Lösung im Laufe der Zeit in eine gleichmäßige Rotation übergeht. Darüber hinaus ist diese Rotation nur um die Trägheitsachse mit dem größeren Trägheitsmoment stabil. Anschaulich ist das bei einem symmetrischen Körper oft die geometrisch kürzeste Achse.
Unabhängig von der Geometrie und den Parametern zeigt dies, dass - wenn das System genug Zeit hat - das Vorhandensein von Flüssigkeit Präzession des Körpers verhindert.
Die theoretischen Untersuchungen wurden durch numerische Simulationen begleitet. In diesem Video zu einem Experiement eines mit Flüssigkeit gefülltem starrem Körpers wird der Effekt illustriert, dass wenn er zuerst um die lange Achse angedreht wird, in der freien Bewegung schnell zu einer Rotation um eine kurze Achse findet.
Interessant ist auch der Fall, wenn sich das flüssige Material nicht ähnlich wie Wasser verhält, sondern ein sogenanntes Nichtnewtonsches Fluid ist. Hierfür gibt es viele Anwendungen - zum Beispiel, wenn auch elastische Verformungen möglich sind. Das heißt konkret: In den partiellen Differentialgleichungen treten noch mehr nichtlineare Terme auf als im Fall der Navier-Stokes Gleichungen für wasserähnliche Stoffe. Für diese Terme müssen neue Techniken entwickelt werden.
Literatur und weiterführende Informationen
- K. Disser: Strong Solutions for the Interaction of a Rigid Body and a Viscoelastic Fluid, Journal of Mathematical Fluid Mechanics 15(4), 2012.
- K. Disser e.a.: L^p -theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Transactions of the American Mathematical Society 365(3), 2013.
- K. Disser: Asymptotic behaviour of a rigid body with a cavity filled by a viscous liquid, arXiv:1405.6221, 2014.
- K. Disser e.a.: Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid, Archive for Rational Mechanics and Analysis 221(1):1-40, 2016.
Podcasts
- H. Wilson: Viscoelastic Fluids, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 92, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
- M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
Advanced Mathematics
jeudi 12 octobre 2017 • Duration 01:06:00
Gudrun Thäter and Jonathan Rollin talk about their plans for the course Advanced Mathematics (taught in English) for mechanical engineers at the Karlsruhe Institute of Technology (KIT). The topics of their conversation are relevant in the mathematical education for engineers in general (though the structure of courses differs between universities). They discuss
- how to embrace university mathematics,
- how to study,
- what is the structure of the educational program and
- what topics will be covered in the first semester in Karlsruhe.
For students starting an engineering study course it is clear, that a mathematical education will be an important part. Nevertheless, most students are not aware that their experiences with mathematics at school will not match well with the mathematics at university. This is true in many ways. Mathematics is much more than calculations. As the mathematical models become more involved, more theoretical knowledge is needed in order to learn how and why the calculations work. In particular the connections among basic ideas become more and more important to see why certain rules are valid. Very often this knowledge also is essential since the rules need to be adapted for different settings.
In their everyday work, engineers combine the use of well-established procedures with the ability to come up with solutions to yet unsolved problems. In our mathematics education, we try to support that skills insofar as we train certain calculations with the aim that they become routine for the future engineers. But we also show the ideas and ways how mathematicians came up with these ideas and how they are applied again and again at different levels of abstraction. This shall help the students to become creative in their engineering career.
Moreover seeing how the calculation procedures are derived often helps to remember them. So it makes a lot of sense to learn about proofs behind calculations, even if we usually do not ask to repeat proofs during the written exam at the end of the semester.
The course is structured as 2 lectures, 1 problem class and 1 tutorial per week. Moreover there is a homework sheet every week. All of them play their own role in helping students to make progress in mathematics.
The lecture is the place to see new material and to learn about examples, connections and motivations. In this course there are lecture notes which cover most topics of the lecture (and on top of that there are a lot of books out there!). So the lecture is the place where students follow the main ideas and take these ideas to work with the written notes of the lecture later on.
The theory taught in the lecture becomes more alive in the problem classes and tutorials. In the problem classes students see how the theory is applied to solve problems and exercises. But most importantly, students must solve problems on their own, with the help of the material from the lecture. Only in this way they learn how to use the theory. Very often the problems seem quite hard in the sense that it is not clear how to start or proceed. This is due to the fact that students are still learning to translate the information from the lecture to a net of knowledge they build for themselves. In the tutorial the tutor and the fellow students work together to find first steps onto a ladder to solving problems on the homework.
Gudrun and Jonathan love mathematics. But from their own experience they can understand why some of the students fear mathematics and expect it to be too difficult to master. They have the following tips:
- just take one step after the other, and do not give up too early
- discuss problems, questions and topics of the lecture with fellow students - talking about mathematics helps to understand it
- teach fellow students about things you understand - you will be more confident with your arguments, or find some gaps to fix
- take time to think about mathematics and the homework problems
- sit down after the lecture, and repeat the arguments and ideas in your own words in order to make them your own
- use the problem classes and tutorials to ask questions
In the lecture course, students see the basic concepts of different mathematical fields. Namely, it covers calculus, linear algebra, numerics and stochastics. Results from all these fields will help them as engineers to calculate as well as to invent. There is no standard or best way to organize the topics since there is a network of connections inbetween results and a lot of different ways to end up with models and calculation procedures. In the course in Karlsruhe in the first semester we mainly focus on calculus and touch the following subjects:
- Numbers
- Methods of proof
- Complex numbers
- Sequences and convergence
- Functions and continuity
- Series
- Differential calculus of one real variable
- Integral calculus
- Numerical integration
- Elementary differential equations
All of these topics have applications and typical problems which will be trained in the problem class. But moreover they are stepping stones in order to master more and more complex problems. This already becomes clear during the first semester but will become more clear at the end of the course.
Literature and related information
- K. F. Riley, M. P. Hobson, S. J. Bence: Mathematical Methods for Physics and Engineering. Cambridge University Press.
- K. F. Riley, M. P. Hobson: Foundation Mathematics for the Physical Sciences. Cambridge University Press.
- T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K. Lichtenegger, H. Stachel: Mathematik.Spektrum Akademischer Verlag, Heidelberg (in German).
- J. Stewart: Calculus, Early Transcendentals. Brooks/Cole Publishing Company.
- K. Burg, H. Haf, F. Wille: Höhere Mathematik für Ingenieure. Volumes I-III. Teubner Verlag, Stuttgart (in German).
- E. Kreyszig: Advanced Engineering Mathematics. John Wiley & Sons.
- E.W. Swokowski, M. Olinick, D. Pence, J.A. Cole: Calculus. PWS Publishing Company. Boston.
Podcasts
- F. Hettlich: Höhere Mathematik, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
- J. Eilinghoff: Analysis, Gespräch mit S. Ritterbusch im Modellansatz Podcast, Folge 36, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
Lilium
jeudi 5 octobre 2017 • Duration 47:42
Gudrun traf Patrick Nathen im April 2017 neben dem Flugfeld in Oberpfaffenhofen. Vielen ist dieser Ort ein Begriff, weil das Deutsche Zentrum für Luft- und Raumfahrt dort seinen Sitz hat. Auch das von Patrick mitgegründete Startup Lilium Aviation hat dort seine Büros. Die Vision von Lillium ist es ein Anbieter wie Uber zu werden - allerdings für den Luftraum. Dafür wird ein senkrecht startender Jet entwickelt, der mit Elektromotoren relativ leise und mit wenig Platzbedarf beim Starten und Landen Personen in Ballungsgebieten schnell von Punkt zu Punkt transportiert: Mobility on demand. Die Fluggeräte starten senkrecht wie Hubschrauber und auf Reisehöhe werden sie zum Jet. Diesem Traum waren sie zum Zeitpunkt unseres Gespräches schon sehr nahe: Der Prototyp flog und befand sich im Zulassungsverfahren der Europäischen Agentur für Flugsicherheit (EASA).
Neben den Fluggeräten muss auch die Infrastruktur entwickelt werden. Einerseits lassen sich die Helipads als Landeplätze in Metropolregionen nutzen, andererseits braucht es auch die Software, die Nutzer, Geräte und Landemöglichkeiten miteinander verbinden wird. In der Zukunft soll es sogar möglich werden, auf Piloten ganz zu verzichten, weil die Geräte vom Boden ferngesteuert werden.
Statt - wie Gudrun an dem Morgen - über eine Stunde aus der Innenstadt von München nach Oberpfaffenhofen zu fahren, würde sich die Reisezeit für diese Strecke auf etwa 5 min verkürzen. Das klingt zu schön, um wahr zu werden - diese Idee müssen Menschen erst für möglich halten bevor es Normalität werden kann. Die Geschichte von Lilium begann 2013 in der WG von vier Ingenieurstudenten - Daniel Wiegand, Matthias Meiner, Patrick Nathen and Sebastian Born - mit einer "spinnerten" Idee. Alle haben an der Fakultät für Maschinenwesen der TU München studiert oder promoviert. Sehr schnell hatten sie einen ersten großen Investor gefunden, sind auf ein Team von 40 Leuten gewachsen (Stand April - inzwischen sind es schon 70) und nun wird der Zweisitzer im 1:1 Modell getestet. Das Folgeprodukt soll schließlich auch eine bemannte Zertifizierung bekommen und eine effektive Problemlösung für die Allgemeinheit werden. Das betrifft dicht besiedelte Metropolregionen genauso wie ländliche Regionen mit wenig ÖPNV-Optionen. Dafür haben sie in der zweiten Finanzierungsrunde 90 Millionen Euro Kapital eingeworben.
Beim Starten und Landen gibt es auch in der von Lilium entwickelten Technologie Lärm wegen der Propeller, die für den Auftrieb sorgen. Da aber möglichst wenig Lärmentwicklung eine wichtige Voraussetzung dafür ist, dass sich die Technologie möglichst weit durchsetzen wird, wurde nach neuen Ideen zur Lärmvermeidung gesucht. Jetzt hat der Propeller eine Hülle. Dadurch wird weniger Schall abgestrahlt und die Effizienz erhöht. Im Reiseflug trägt sich der Flieger selbst. Um so einfach wie möglich zu bauen, muss man aber mit dem für Starten und Landen nötigen großen Motor irgendwie leben.
In der Konstruktion gingen sie approximativ vor. Als ersten Schritt kann man die nötige Spannweite und Flügelfläche zusammen mit der Fluggeschwindigkeit durch vorläufige aerodynamische Faustformeln schätzen. Die zu erreichenden Widerstands- und Auftriebsbeiwerte legen schließlich auch das Profil der Flügel mehr oder weniger fest. Und die statische Stabilität kann mit Hilfe von Vorerfahrungen mit klassischen Flugobjekten gesichert werden. Zum Beispiel durch eine elliptische Auftriebsverteilung, die widerstandsarm ist, weil sie Turbulenzen an den falschen Stellen vermeidet. Für genauere Untersuchungen mussten diese Ideen und die gesamte Geometrie aber zunächst am Computer simuliert werden. Hier gibt es Berührungspunkte zur Arbeit an Gudruns Lehrstuhl, denn die genaue Strömungsrechnung erfordert moderne Softwarepakete auf dem Gebiet.
Hinzu kommt, dass Batterien immer kritisch für die Sicherheit der Geräte sind. Sie heizen sich in der Start- und Landephase auf und das Kühlungskonzept muss wirklich clever sein. Die Anforderung ist, dass das Fluggerät im Winter in Schweden und im Sommer in Dubai funktioniert. Außerdem muss sichergestellt werden, dass eine brennende Batterie nicht zur Zerstörung des ganzen Gerätes führt. Schließlich sind auch Ergonomie und Raumluftkomfort keine unwichtigen Themen. Zum Beispiel müssen Böen durch den Flugcomputer abgefangen werden und hierfür ist Redundanz in den Triebwerken nötig.
Literatur und weiterführende Informationen
- K. Weltner: Flugphysik. Physik des Fliegens, Strömungsphysik, Raketen, Satelliten. Books on Demand, Norderstedt, ISBN 978-3-7412-1472-1.
- W.-H. Hucho: Aerodynamik der stumpfen Körper. Physikalische Grundlagen und Anwendungen in der Praxis. Vieweg + Teubner, Wiesbaden 2011, ISBN 978-3-8348-1462-3.
- P. Nathen e.a.: An extension of the Lattice-Boltzmann Method for simulating turbulent flows around rotating geometries of arbitrary shape, Conference: 21st AIAA Computational Fluid Dynamics Conference 2013.
- P. Nathen, D. Gaudlitz, N. Adams:Towards wall-adaption of turbulence models within the Lattice Boltzmann framework Conference: TSFP-9, 2015.
- Handelsblatt am 5.9.2017
- Wired am 20.04.2017 Interview.
- Investor Frank Thelens Blick auf lilium
- Mitmachen bei lilium: Offene Stellen
Podcasts
- S. Cannon, M. Voelter: Flying the V-22 Osprey, omega tau Podcast, Episode 219, 2016.
- R. Rudnik, H. Klein: Auftrieb, Resonator-Podcast der Helmholtz-Gemeinschaft, Episode 71, 2015.
- W. Rudolf: Ein elektrisch angetriebenes VTOL-Flugzeug, CC2tv Audiocast Folge 568, 2017. (Folge 568 Direktlink zur mp3-Datei)
- N. Rottger: Die digitale Republik, piqd Podcast Magazin, 2017.