搞乜咁科學 GMG Science – Details, episodes & analysis

Podcast details

Technical and general information from the podcast's RSS feed.

搞乜咁科學 GMG Science

搞乜咁科學 GMG Science

Dr Abellona U & Keith Poon

Science
Science
Science

Frequency: 1 episode/34d. Total Eps: 38

Buzzsprout
歡迎嚟到 搞乜咁科學!呢個係由一個數學老師、同埋一個生物醫學博士傾下計,順便探討一下有趣科學知識嘅podcast! 每集我哋會就住一個主題,傾吓相關嘅數學故事同埋科學知識!大家可以喺Instagram: @gmgscience 搞乜咁科學 搵到我哋㗎!如果大家鍾意喺YouTube聽podcast都可以去我哋嘅YouTube Channel gmgscience 收聽,隨時會有bonus content! :)歡迎大家一齊參加呢個盛會,一齊畀科學同數學喚醒大家沉睡於深處嘅好奇心!到時見!
Site
RSS
Apple

Recent rankings

Latest chart positions across Apple Podcasts and Spotify rankings.

Apple Podcasts

  • 🇬🇧 Great Britain - lifeSciences

    20/07/2025
    #87
  • 🇬🇧 Great Britain - lifeSciences

    19/07/2025
    #73
  • 🇬🇧 Great Britain - lifeSciences

    18/07/2025
    #64
  • 🇬🇧 Great Britain - lifeSciences

    17/07/2025
    #55
  • 🇬🇧 Great Britain - lifeSciences

    16/07/2025
    #45
  • 🇬🇧 Great Britain - lifeSciences

    15/07/2025
    #26
  • 🇬🇧 Great Britain - lifeSciences

    24/05/2025
    #83
  • 🇬🇧 Great Britain - lifeSciences

    23/05/2025
    #75
  • 🇨🇦 Canada - lifeSciences

    22/05/2025
    #82
  • 🇬🇧 Great Britain - lifeSciences

    22/05/2025
    #56

Spotify

    No recent rankings available



RSS feed quality and score

Technical evaluation of the podcast's RSS feed quality and structure.

See all
RSS feed quality
Good

Score global : 78%


Publication history

Monthly episode publishing history over the past years.

Episodes published by month in

Latest published episodes

Recent episodes with titles, durations, and descriptions.

See all

搞乜咁科學 #26 - Bonus: Keith 喺劍橋?! 🇬🇧

Season 1 · Episode 26

dimanche 8 septembre 2024Duration 27:48

⚠️特發⚠️

Keith 同 Abellona 竟然同時喺英國劍橋出現,仲錄左集Bonus Episode?! 想知佢地喺撐完船半醉半醒嘅時候,同埋Keith俾Abellona迫左去做苦力之前,吹左啲咩水就快啲聽啦~

搞乜咁科學 #25 - 讀書會 Book Club '24 📚

Season 1 · Episode 25

vendredi 7 juin 2024Duration 01:18:38

歡迎嚟到 搞乜咁科學 GMG Science 第25集!

今集嘅主題係讀書會 Book Club 2024 📚!我哋會推介兩本我哋好鍾意嘅書比大家喺嚟緊一年一度嘅「夏日科學節」一齊睇! 仲有啲大家可以嚟緊一齊參與嘅節目,所以今集記住聽到最尾啊~

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: www.instagram.com/gmgscience
搞乜咁科學 YouTube: https://www.youtube.com/@gmgscience
Abellona IG: www.instagram.com/_doctor_u
Keith IG: www.instagram.com/keith.poonsir
Keith YouTube: www.youtube.com/@KeithPoonSir
後期製作 Ah Long IG: www.instagram.com/arlongphotog.hk

Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience

Keith's Part
Book: Emotional Agility: Get Unstuck, Embrace Change, and Thrive in Work and Life by Susan David
Author: Susan David 

Baba is you
Alexithymia 述情障礙 - Wikipedia
述情障礙自我測試 - Researchgate
Mental Health Toolkit: Tools to Bolster Your Mood & Mental Health by Huberman Lab
Mindfulness - Wikipedia
iOS Journal app
感受輪 - Wheels of Emotions

Abellona's Part
Book: Factfulness: Ten Reasons We're Wrong About the World and Why Things Are Better Than You Think
Author: Hans Rosling

Gapminder
Hans & Ola Rosling's TED Talk: How Not To Be Ignorant About The World
All Hans Rosling's TED Talks

搞乜咁科學 投稿大召集!
有冇一個你覺得新奇有趣嘅數學/科學概念想同大家分享?
製作一個兩分鐘以下嘅reel 或者兩分鐘嘅錄音, 喺2024年8月31日前, 就有機會喺我地嘅平台聽/睇到你嘅作品~

投稿遞交表格: festival.gmgscience.com

搞乜咁科學 #16 - 散播 Spread🧈

Season 2 · Episode 16

vendredi 1 septembre 2023Duration 01:16:28

歡迎嚟到 搞乜咁科學 GMG Science 第16集!

今集嘅主題係散播 Spread🧈!Keith會講有咩會好似病毒咁傳播,但唔洗見面都傳得好快?😯 Abellona就講一個水喉柄竟然係殺死幾百人嘅元兇?🚰

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎

搞乜咁科學網頁

搞乜咁科學 IG - 大部份今集有關嘅圖片會係我哋IG見到㗎

搞乜咁科學 YouTube

Abellona IG

Keith IG

Keith YouTube


Keith 的部分

R0 - Wikipedia

社交網絡看遙言傳播 - Wikipedia

遙言傳播SIR Model的原文
Daley, D.J., and Kendal, D.G. 1965 Stochastic rumors, J. Inst. Maths Applics 1, p. 42.

郭富城失去了一切 - HK01

Fedewa, N., Krause, E., & Sisson, A. (2013). Spread of a rumor. Society for Industrial and Applied Mathematics. Central Michigan University25, 977-1002.

Chen, X., & Wang, N. (2020). Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality. Scientific Reports10(1), 5887.

Paek, H. J., & Hove, T. (2019). Effective strategies for responding to rumors about risks: the case of radiation-contaminated food in South Korea. Public Relations Review45(3), 101762.


Abellona 的部分

Antonie van Leeuwenhoek - Wikipedia

Animalcule - Wikipedia

Pasteur and Spontaneous Generation - 巴斯德推翻自然發生論的實驗

Miasma theory - Wikipedia

Germ theory - Wikipedia

1854年倫敦Broad Street霍亂爆發 - Wikipedia

John Snow - Wikipedia

Tulchinsky, T.H., 2018. John Snow, cholera, the broad street pump; waterborne diseases then and now. Case studies in public health, p.77.

England: The Broad Street Pump - You Know Nothing, John Snow - Extra History - YouTube

1894年香港鼠疫 - Wikipedia

Alexandre Yersin - Wikipedia

鼠疫桿菌 - Wikipedia


延伸閱讀

The Ghost Map by Steven Johnson

亦推介參訪香港醫學博物館

好書推介

The Housekeeper and the Professor by Yoko Ogawa

博士熱愛的算式 – 小川洋子

搞乜咁科學 #15 - 賭博 Gamble🎰

Season 2 · Episode 15

vendredi 11 août 2023Duration 01:31:59

歡迎嚟到 搞乜咁科學 GMG Science 第15集!

今集嘅主題係賭博Gamble🎰!Keith會講點解堅持努力唔係一定好,Abellona會講消毒酒精殺淨嗰0.01%細菌病毒去咗邊??

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com

搞乜咁科學 IG: @gmgscience

搞乜咁科學 YouTube: https://www.youtube.com/@gmgscience

Abellona IG: @_doctor_u

Keith IG: @keith.poonsir

Keith YouTube: www.youtube.com/@KeithPoonSir

後期製作 阿Long IG: @arlongphotog.hk

Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience

更正~

06:04 - Keith話蘇格蘭傳統樂器真確應該叫風笛 Bagpipes

06:23 - Abellona 手風琴嘅左手邊應該係有六列

Abellona的部分

Framing effect 框架效應 - Wikipedia

Loss aversion 損失規避 - Wikipedia

Endowment Effect 禀賦效應 - Wikipedia

Prospect theory 展望理论 - Wikipedia

經典原文:

Kahneman, D. and Tversky, A., 2013. Prospect theory: An analysis of decision under risk. In Handbook of the fundamentals of financial decision making: Part I (pp. 99-127).

Tversky, A. and Kahneman, D., 1981. The framing of decisions and the psychology of choice. Science211(4481), pp.453-458.

後扣帶皮層厚度(Posterior cingulate cortex)與中年過後漸增的損失規避的關係

Guttman, Z.R., Ghahremani, D.G., Pochon, J.B., Dean, A.C. and London, E.D., 2021. Age influences loss aversion through effects on posterior cingulate cortical thickness. Frontiers in Neuroscience15, p.673106.

延伸閱讀:

Thinking Fast and Slow by Daniel Kahneman

Keith的部分
大部份嘅人用緊錯嘅方法去溫書!你有無中呢個伏? - The Myth of Rereading - YouTube

輪盤 Roulette - Wikipedia

骰寶 Sic Bo - Wikipedia

博弈論 Game Theory - Wikipedia

馮紐曼 John von Neumann - Wikipedia

Thinking in Bet by Annie Duke

Quit by Annie Duke

斯蒂格勒 George Stigler - Wikipedia

Regression toward the mean - Wikipedia

Grit - Wikipedia

達克沃斯 Angela Duckworth - Wikipedia

承諾升級 Escalation of commitment - Wikipedia

搞乜咁科學 #14 - 地圖 Map 🗺

Season 1 · Episode 14

vendredi 5 mai 2023Duration 01:34:38

歡迎嚟到 搞乜咁科學 GMG Science 第14集!
今集嘅主題係地圖 Map🗺!Keith會講點解好多地圖都有錯?Abellona會解釋袋鼠嘅鄉下喺美州?!
喂!好奇心,係時候醒喇 :)


Social Media:
科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7
搞乜咁科學網頁: www.gmgscience.com
搞乜咁科學 IG: www.instagram.com/gmgscience
搞乜咁科學 YouTube: www.youtube.com/@gmgscience
Abellona IG: www.instagram.com/_doctor_u
Keith IG: www.instagram.com/keith.poonsir
Keith YouTube: www.youtube.com/@KeithPoonSir


Show Notes and Links:
大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience

Abellona’s part
黏菌搵迷宮出口 - Genius Slime Mold Solves a Maze!
黏菌解決東京灣的鐵路網絡 - Slime mold form a map of the Tokyo-area railway system
Alfred Wallace - 達爾文嘅友敵以及生物地理學之父
華萊士線 Wallace line
Alfred Wegener - 提出大陸飄移學說的人
大陸飄移學說
南方大陸 Gondwana
南美洲曾經是綠色的 When Antarctica Was Green
有袋動物怎樣從美洲 How South America Made the Marsupials
當雀仔不再飛 When Birds Stopped Flying
Kieren J. Mitchell et al. ,Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution.Science344,898-900(2014). DOI:10.1126/science.1251981
狐猴是怎樣飄去馬達加斯加的 Washed up in Madagascar

Keith Part
How to Solve It by G. Polya
麥卡托投影法Mercator projection
地圖上唔同國家真正大細係點? The True Size Of …
上南下北嘅地圖?
摩爾魏德投影 Mollweide Projection
古氏分瓣投影 Goode Homolosine Projection
地球上最短的距離唔係直線?
方位等距投影 Azimuthal equidistant projection
用唔同地方做中心嘅方位等距投影
再多啲唔同嘅地圖!!!
魚睇嘅地圖
睇到海流嘅地圖 

夏日科學節好書推介
Salt, Fat, Acid, Heat by Samin Nosrat
The Man Who Mistook His Wife for a Hat and Other Clinical Tales by Oliver Sacks

搞乜咁科學 #13 - 知覺 Sense 🙈

Season 1 · Episode 13

vendredi 31 mars 2023Duration 01:23:46

歡迎嚟到 搞乜咁科學 GMG Science 第13集!

今集嘅主題知覺Sense🙈! Keith 會解釋1同9中間究竟係幾多 (提示: 唔係5) 🧮 Abellona 會講我地係點樣畀我地嘅視覺呃咗?👀

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com

搞乜咁科學 IG: www.instagram.com/gmgscience

搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ

Abellona IG: www.instagram.com/_doctor_u

Keith IG: www.instagram.com/keith.poonsir

Keith YouTube: https://youtube.com/c/KeithPoonSir


Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience

苜苜 @mukmuk.studio 

ChatGPT - OpenAI

Keith’s part

對數 Logarithm - Wikipedia 

心理物理學 Psychophysics - Wikipedia 

韋伯-費希納定理 Weber–Fechner law - Wikipedia

分貝 Decibel - Wikipedia 

Can Silence Actually Drive You Crazy? - Veritasium

小朋友或者偏遠地區的人會覺得 1 同 9 中間唔係 5 ? - MIT News

最小可覺差 Just Noticeable Difference - Wikipedia 

Psychophysics of Prices Paradox - JSTOR 

延伸閱讀:

1,2,3,4,5,6,7,8,9,10,11,12,13 … - Vsauce



Abellona’s part

Akiyoshi Kitaoka - 佢嘅眼睛係咩顏色? 

世紀爭議: 條裙咩色 The Dress - Wikipedia

Akiyoshi Kitaoka - 士多啤梨的顏色

顏色恆常性 - Wikipedia

傳籃球 1.0 版本 - Selective Attention Test 

傳籃球 2.0 版本 - The Monkey Business Illusion

“Whodunnit?”

轉咗個人都察覺唔到? - The Door Study

Simons, D.J., Levin, D.T. (1998) Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review 5, 644–649.

Kennedy, K. D., Stephens, C. L., Williams, R. A., & Schutte, P. C. (2014) Automation and Inattentional Blindness in a Simulated Flight Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 58(1), 2058–2062.

推介:

廢中俱樂部 

講經 

Overcast 

Pocket Casts 

搞乜咁科學 #12 - 窿窿 Holes 🕳️

Season 1 · Episode 12

vendredi 10 février 2023Duration 01:00:07

歡迎嚟到 搞乜咁科學 GMG Science 第12集!

今集嘅主題係窿窿Holes🕳!

Keith 會解決一個將人分為兩大陣營嘅世紀爭議。⚔️ Abellona 會講我地人類同冬甩有咩共通點。🍩

喂!好奇心,係時候醒喇 :)

🌟搞乜咁科學一週年問卷調查!😼
https://forms.gle/PvUvGWgP3cf4R3QB6

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com

搞乜咁科學 IG: www.instagram.com/gmgscience

搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ

Abellona IG: www.instagram.com/_doctor_u

Keith IG: www.instagram.com/keith.poonsir

Keith YouTube: https://youtube.com/c/KeithPoonSir


Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience


Keith’s part

陶瓷拉坯機 - Potter's wheel

拓撲學 - Topology

手性 - Chirality

同胚 - Homeomorphism

紐結理論 - Knot theory

人 = 7個窿嘅冬甩?! By VSauce

Further Reading:

Why does this balloon have -1 holes? by Stand-up Maths


Abellona’s part

耳咽管 Auditory tube - Wikipedia

後口動物 Deuterostome - Wikipedia

原口動物 Protostome - Wikipedia

原腸胚形成 Gastrulation - Wikipedia

櫛水母 Ctenophore - Wikipedia

其中一個櫛水母品種被發現有間歇性的肛門…

Tamm, S.L., 2019. Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebrate Biology138(1), 3-16.


搞乜咁科學 #11 - 2022新發現 New in 22’🗓

Season 1 · Episode 11

vendredi 13 janvier 2023Duration 01:00:19

歡迎嚟到 搞乜咁科學 GMG Science 第11集!

今集嘅主題係2022新發現 New in 22’🗓!Keith會講數學家點樣將個圓形變成正方形,Abellona會解釋有咩方法製造到萬能嘅流感疫苗?

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎

搞乜咁科學網頁
搞乜咁科學 IG
搞乜咁科學 YouTube
Abellona IG
Keith IG
Keith YouTube


Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎

Keith’s part

學寫電腦程式竟然同學語言能力有關﹐反而同數感無乜關係? - Prat, C. S., et al. (2020). Relating natural language aptitude to individual differences in learning programming languages. Scientific reports, 10(1), 1-10.

較剪全等 Scissor Congruence - nLab 

三大尺規作圖問題 Impossible Constructions - Wikipedia

正方形原來係剪唔到變圓形㗎…

Dubins, L., Hirsch, MW, & Karush, J. (1963). Scissor congruence. Israel Journal of Mathematics, 1(4), 239-247.

可等分解 Equidecomposable - Wolfram MathWorld

…但分解佢就得喇!

Laczkovich, M. (1990). Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem. , 1990(404), 77-117.

宇宙有幾多原子?好多囉 - US Department of Energy’s Jefferson Lab

🟥 ➡️ 🔴 嘅進展

Grabowski, L., Máthé, A., & Pikhurko, O. (2016). Measurable equidecompositions for group actions with an expansion property, accepted by J. Eur. Math. Soc., E-print arxiv, 1601.

Marks, A. S., & Unger, S. T. (2017). Borel circle squaring. Annals of Mathematics, 186(2), 581-605.

終於變到喇!

Máthé, A., Noel, J. A., & Pikhurko, O. (2022). Circle Squaring with Pieces of Small Boundary and Low Borel Complexity. arXiv preprint arXiv:2202.01412.

正方形點變做圓形,去片!

Abellona’s part

過去一百年的流感大流行歷史 – CDC

流感病毒的結構

現時的流感疫苗是怎樣製造的

流感病毒撠手的地方: Antigen shift 抗原轉變 & Antigen drift 抗原飄移

研發萬能流感疫苗的策略

策略一: 同時針對多種HA亞種的mRNA疫苗

Arevalo, C.P., et al, 2022. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science378(6622), pp.899-904.

策略二: 誘使免疫系統針對HA的莖部的疫苗

Nachbagauer, R., et al., 2021. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nature medicine27(1), pp.106-114.

策略三: 針對流感病毒表面的其他蛋白

Kim, K.H., et al., 2022. Universal protection against influenza viruses by multi-subtype neuraminidase and M2 ectodomain virus-like particle. PLoS pathogens18(8), p.e1010755.


搞乜咁科學 #10 - 驚喜Surprise🙀

Season 1 · Episode 10

vendredi 2 décembre 2022Duration 01:16:03

歡迎嚟到 搞乜咁科學 GMG Science !

今集嘅主題係驚喜Surprise🙀!我哋會分享吓一D令我哋覺得好驚訝嘅科學發現。

聽完你可能會搵路叻咗🧭,同埋學識咗點樣經營一間好特別嘅酒店🏨

喂!好奇心,係時候醒喇 :)

Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com

搞乜咁科學 IG: www.instagram.com/gmgscience

搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ

Abellona IG: www.instagram.com/_doctor_u

Keith IG: www.instagram.com/keith.poonsir

Keith YouTube:

https://youtube.com/c/KeithPoonSir


Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience

Abellona’s Section

君主斑蝶 - Wikipedia

君主斑蝶的遷徙 - Wikipedia

君主斑蝶在中墨西哥過冬的景況 - Youtube

Reppert, S. M., Guerra, P. A., & Merlin, C. (2016). Neurobiology of monarch butterfly migration. Annual review of entomology, 61.

動物如何依靠星空搵路 - 訪問早期研究先驅Prof Stephen Emlen - Vox

遷徙的雀鳥運用量子原理感應磁力 - Scientific American

狗狗便便的方向 - 狗也能夠感應到磁場?

Hart, V., Nováková, P., Malkemper, E. P., Begall, S., Hanzal, V., Ježek, M., ... & Burda, H. (2013). Dogs are sensitive to small variations of the Earth’s magnetic field. Frontiers in Zoology10(1), 1-12.

人都得?- 研究人類磁場感應的實驗室

人能夠感應到磁場嗎?- Veritasium

Keith’s Section

大衛·希爾伯特 David Hilbert - Wikipedia

無限旅館 Infinite Hotel - Wikipedia

One Two Three... Infinity by George Gamow - Wikipedia

有無限個質數?! - Wikipedia 

所有數都只係得唯一一個質因數連乘式? - Wikipedia

製造大啲嘅無限嘅方法 Power Set - Wikipedia

Aleph ℵ - Wikipedia 

連續統假設 Continuum Hypothesis - Wikipedia 

康托爾 Georg Cantor - Wikipedia 

保羅·寇恩 Paul Cohen - Wikipedia 

延伸閲讀 Further Reading

An infinite number of $1 bills and an infinite number of $20 bills would be worth the same - Stand-Up Maths

搞乜咁科學 #9 - 係愛啊 Love 💖

Season 1 · Episode 9

vendredi 4 novembre 2022Duration 57:03

歡迎嚟到 搞乜咁科學 GMG Science 第9集!

今集嘅主題係 Love 係愛啊~!Keith會講點樣用數學係短暫嘅一生中搵到真愛,Abellona會解釋點解有人覺得人類嘅基因已經注定咗男仔一定係濫D,女仔一定係挑剔D?

喂!好奇心,係時候醒喇 :)


Social Media:

科學一齊搞 Got Something for GMG - 有咩想同我哋講都可以係度share㗎: https://forms.gle/26RSEgW9NeeSMc4a7

搞乜咁科學網頁: www.gmgscience.com

搞乜咁科學 IG: www.instagram.com/gmgscience

搞乜咁科學 YouTube: https://www.youtube.com/channel/UCFj2cwjDASS2SyYsj3pkNSQ

Abellona IG: www.instagram.com/_doctor_u

Keith IG: www.instagram.com/keith.poonsir

Keith YouTube: https://www.youtube.com/channel/UC9fh5paH2jh5kfBVDEPC1YA


Show Notes and Links:

大部份今集有關嘅圖片會係我哋IG見到㗎: www.instagram.com/gmgscience


Keith 的部分

林家謙 下一位前度 - Wikipedia

最佳停止問題 Optimal Stopping - Wikipedia 

秘書問題 Secretary problem – Wikipedia 

最佳停止問題Excel 

香港人平均結婚年齡- The Standard 

延伸閱讀:

Ferguson, Thomas S. (August 1989). "Who Solved the Secretary Problem?". Statistical Science. 4 (3): 282–289. doi:10.1214/ss/1177012493.]

Fry, H. (2015). The mathematics of love: Patterns, proofs, and the search for the ultimate equation. Simon and Schuster. 

Abellona的部分

貝特曼原理 - Wikipedia 

暴走進化 - Wikipedia

殘障假說 - Wikipedia

性感兒子假說 - Wikipedia

現代重複實驗挑戰貝特曼原理:

Gowaty PA, Kim YK, Anderson WW. No evidence of sexual selection in a repetition of Bateman's classic study of Drosophila melanogaster. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11740-5. doi: 10.1073/pnas.1207851109. Epub 2012 Jun 11. PMID: 22689966; PMCID: PMC3406809. 

貝特曼原理未必能直接套用於人類社會:

Brown GR, Laland KN, Mulder MB. Bateman's principles and human sex roles. Trends Ecol Evol. 2009 Jun;24(6):297-304. doi: 10.1016/j.tree.2009.02.005. Epub 2009 May 4. Erratum in: Trends Ecol Evol. 2013 Oct;28(10):622. PMID: 19403194; PMCID: PMC3096780.

一種叫Jacana的鳥是兩性行為相反的例子:
Why female jacana birds do all the fighting - Slate


Related Shows Based on Content Similarities

Discover shows related to 搞乜咁科學 GMG Science, based on actual content similarities. Explore podcasts with similar topics, themes, and formats, backed by real data.
Génération Do It Yourself
UI Breakfast: UI/UX Design and Product Strategy
Speakeasy by /influx
Perpetual Traffic
Career Contessa
Service Business Mastery for Skilled Trades: HVAC, Plumbing & Electrical Home Service
Marketing Against The Grain
How to Sell Your Stuff on Etsy
RESTAURANT STRATEGY
The Business of Psychology
© My Podcast Data