Data Science Rabbit Podcast – Détails, épisodes et analyse
Détails du podcast
Informations techniques et générales issues du flux RSS du podcast.


Classements récents
Dernières positions dans les classements Apple Podcasts et Spotify.
Apple Podcasts
🇺🇸 États-Unis - mathematics
13/08/2025#57🇺🇸 États-Unis - mathematics
12/08/2025#54🇺🇸 États-Unis - mathematics
11/08/2025#50🇺🇸 États-Unis - mathematics
10/08/2025#44🇺🇸 États-Unis - mathematics
11/04/2025#99🇺🇸 États-Unis - mathematics
10/04/2025#99🇺🇸 États-Unis - mathematics
09/04/2025#97🇺🇸 États-Unis - mathematics
08/04/2025#97🇺🇸 États-Unis - mathematics
07/04/2025#93🇺🇸 États-Unis - mathematics
06/04/2025#92
Spotify
Aucun classement récent disponible
Liens partagés entre épisodes et podcasts
Liens présents dans les descriptions d'épisodes et autres podcasts les utilisant également.
See allQualité et score du flux RSS
Évaluation technique de la qualité et de la structure du flux RSS.
See allScore global : 52%
Historique des publications
Répartition mensuelle des publications d'épisodes au fil des années.
Robots of Death (Ep 012)
Saison 1 · Épisode 12
vendredi 16 août 2024 • Durée 13:12
Making Much of Time (Ep 011)
Saison 1 · Épisode 11
vendredi 2 août 2024 • Durée 12:33
History of the Arithmetic Mean (Ep 002)
Saison 1 · Épisode 2
lundi 19 février 2024 • Durée 14:37
Welcome to the Data Science Rabbit Podcast, where we dive deep into the mysteries of data science and emerge with newfound knowledge. Join your host Michael Bagalman as we embark on an enlightening journey through the history of the arithmetic mean.
From the insights of ancient Greek philosophers to the mathematical prowess of Indian kings, we'll unravel the historical threads that led to the development of this fundamental statistical tool. Along the way, we'll encounter pivotal figures like Jacob Kobel and Karl Friedrich Gauss, who helped refine our understanding of the mean and its applications.
We'll also delve into the debates surrounding the use of the mean, from Daniel Bernoulli's skepticism to William Stanley Jevons's groundbreaking insights into the nature of measurement and error.
Whether you're a seasoned data scientist or a curious listener eager to learn more about the history of mathematics, join us as we uncover the hidden depths of the arithmetic mean. Subscribe now to the Data Science Rabbit Podcast and join us on this captivating exploration into the heart of statistical reasoning.
What the Heck is Data Science? (Ep 001)
Saison 1 · Épisode 1
dimanche 18 février 2024 • Durée 12:10
Hop down the rabbit hole with your host Michael Bagalman and uncover the tangled roots from whence data science grew!
Journey back to the 60s statistics split that led pioneers like John Tukey to carve an applied path different from the mathematical ivory tower. Learn how the modern phrase "data science" first percolated abroad before reaching American shores. Trace tensions between data modeling and algorithmic camps, with outspoken statisticians like Leo Breiman calling for a paradigm shift. Follow data science’s emergence in tech titans like Google and explosive growth after the famed Netflix competition.
Despite current domination by computer scientists, see openings for statisticians and domain experts to yet claim a seat at the table in this ever-evolving field that extracts practical value from the exponential explosion of data.
Podcast Trailer
samedi 17 février 2024 • Durée 00:52
Keep it Simple, Stupid (Ep 010)
Saison 1 · Épisode 10
vendredi 26 juillet 2024 • Durée 14:22
The Weather, Climate, and Terrain (of Your Mind) - Ep 009
Saison 1 · Épisode 9
vendredi 12 juillet 2024 • Durée 16:18
Old Dogs, Same Old Tricks (Ep 008)
Saison 1 · Épisode 8
samedi 6 juillet 2024 • Durée 13:50
Join host Michael Bagalman on the Data Science Rabbit Podcast for a witty dive into the world of data science. This episode explores teaching marketers data science vs. improving data scientists' communication skills, offers a practical checklist (from none other than the data scientist nonpareil, Cornelius P. Snarkington) for ethical predictive modeling, and features a "comedy" bit about being a seasoned data scientist. Expect sharp insights, edgy humor, and relatable stories from the data trenches.
Body Heat (Ep 007)
Saison 1 · Épisode 7
lundi 20 mai 2024 • Durée 14:47
Welcome to another insightful episode of the Data Science Rabbit Podcast, the official podcast of the Data Science Rabbit Hole, hosted by Michael Bagalman. Today, we dive deep into the intriguing data science behind human body temperature. Join us as we debunk the long-held belief that 98.6°F is the "normal" body temperature and explore how modern technology and data science are reshaping our understanding of health.
We'll also share a humorous yet insightful sponsor message about P-Values, discuss the importance of deep understanding and clear communication in the digital age, and let the data scientist nonpareil, Cornelius P. Snarkington, reflect on a wise quote from Doctor Who about the dangers of altering facts to fit views.
Whether you're a data science enthusiast or simply curious about how data can improve our health, this episode is for you. Tune in and join us as we fall down the rabbit hole into the fascinating world of data science and human body temperature!
The New Pantheon of AI (Ep 006)
Saison 1 · Épisode 6
samedi 27 avril 2024 • Durée 15:02
Join host Michael Bagalman as he dives down the Data Science Rabbit Hole to explore the latest developments in training large language models. In this episode, we discuss a recent paper from Meta and NYU that proposes letting AI models sculpt themselves through self-rewarding learning, rather than relying solely on human feedback. We ponder the implications of AI systems becoming their own harshest critics and the balance between human creation and potential hubris.
The episode also features tips on making data visualization more engaging by providing context relevant to your audience and using interactive dashboards. Finally, we close with a lighthearted AI-themed graduation speech I wrote last year, inspired by Mary Schmich's famous essay that is commonly referred to as "Wear Sunscreen".
Tune in for thought-provoking insights on the future of AI!